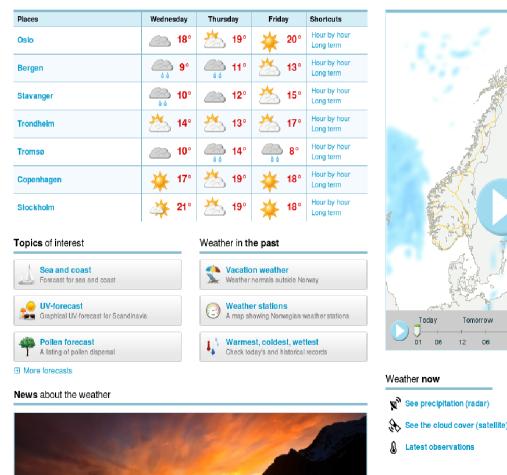


Norwegian Meteorological Institute met.no

The Yr.no Backend System

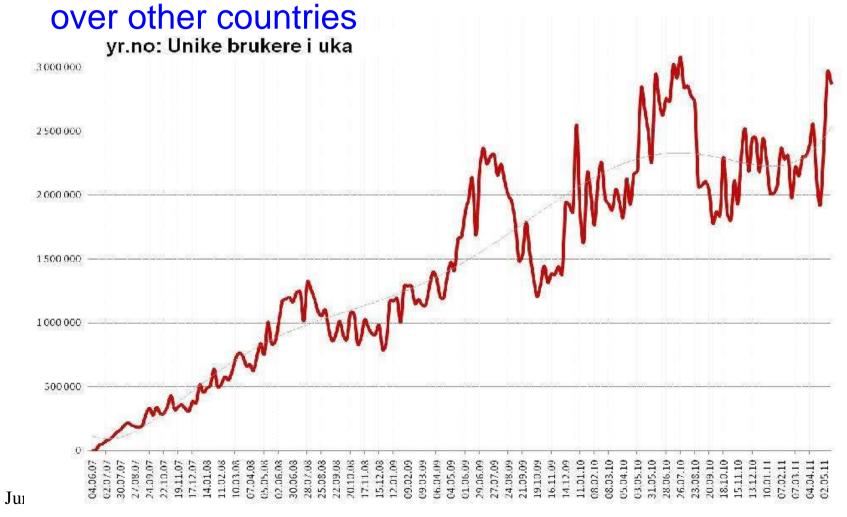
EGOWS 2011, Toulouse, France. June 6 - 9, 2011

Who am I?


- Michael Akinde
 - Database Architect, Met.no (2006)
 - Database Specialist, SMHI (2002 2007)
 - Ph.D. Computer Science, Aalborg University (2003)
- WDB + WMS Development Group
 - Data storage and transfer backend of Yr.no
 - Four software developers
 - Two to three operational developers (setup, maintenance)

Yr.no

- Launched 19-9-2007
- One of Norway's largest web sites
 - ~2,2 million unique clients every week
- "All" Norwegian internet users know of yr.no
- More than a million Norwegians use yr.no every day

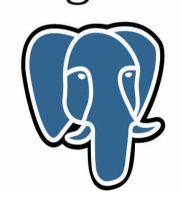


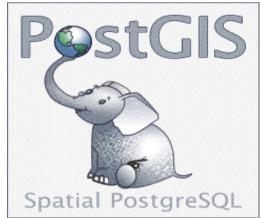
Yr.no Statistics

• 55% Norwegians, 27% Swedish; the last 18% is distributed

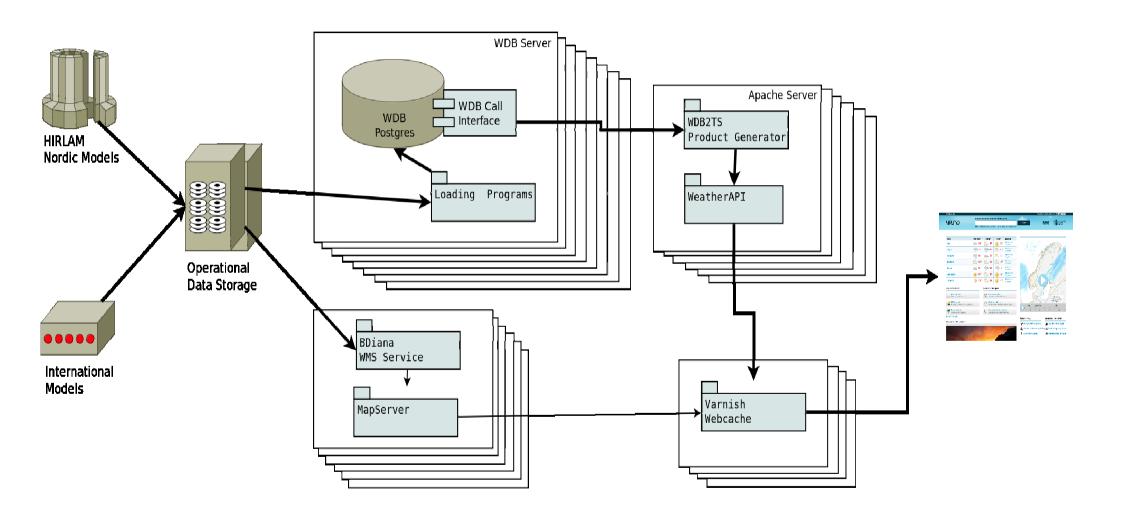
Yr.no Backend: The Goals

- 24x7 hour operation
- Bursts of data input
 - ~80 GB of data 4 times a day
- Peaks of data output
 - ~120,000 data values retrieved per second
- Sub-second response times (300 ms)
- Scalable
- Flexible


How did we do it?



PostgreSQL


What went into the Backend?

- Storage Backend: Postgres database system for storage and retrieval of weather data (WDB)
- Data Retrieval: Query interface through Apache module (WDB2TS)
- Image Generation: Diana batch image generation (BDiana)
- Cache: Varnish web-cache

100% Free and Open Source

Yr.no Backend Architecture

Yr.no Backend Details (1)

- Operational Data Storage
 - 2 Distributed Replicated Block Device NFS Servers
- Weather and Water Database System
 - 6 servers for weather data; 2 for ocean data
 - Each server delivers 20-40 requests per second with ~0,25 seconds latency
 - A typical request retrieves/calculates ~1500 floating points from ~80Gb of data

Yr.no Backend Details (2)

- Product Generation Servers
 - 6 servers running Apache HTTP Server
 - 400-600 data requests/second on average; peak loads at ~1000 data requests/second
- Image Generation Servers (WMS)
 - 1000-1500 image requests/second on average; peak loads at ~2000 image requests/second
- Cache Servers (Varnish)
 - 2 active servers + 2 standby servers. Delivers
 >1000 requests/second with <0.1 seconds latency

WDB: Database Backend

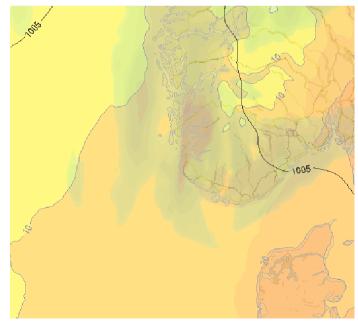
- WDB is a storage system for meteorological, hydrological, and oceanographic data
 - Open-source project (GNU GPL2) developed and currently administrated by met.no
 - Built on open source components
 - Postgres Relational DBMS
 - PostGIS, Proj.4, libgeos
 - GNU tools, Boost, log4cpp

WDB: Loading Programs

- Loading programs write data into the WDB system using write functions in the WDB Call Interface
 - GRIB1/GRIB2 data (ECMWF GRIB API)
 - FELT data (internal met.no)
 - MOX data (XML format for weatherapi.met.no)
 - BIL (limited loader for Binary Interleaved by Line)
 - DEM (Norwegian demographic format)
 - Pending: NetCDF, BUFR

WDB: Call Interface

- WCI SQL Function Interface
 - wci.read(...)
 - Returns data as grid reference or point data
 - Slice data by data provider, time, parameter, levels, etc.
 - wci.write(...)
 - Writes data into the database; pretty effective for fields, not optimized for point data (yet)
 - Used by the WDB loading programs
 - Results of the SQL functions can be manipulated using regular SQL and accessed from any language


WDB2TS

- Simple web front-end for retrieving point-data from a WDB system
 - Apache module
 - REST-like interface to the data
 - Returns data in two XML formats (weatherapi legacy format and MOX) as well as comma separated text
- MOX is a GML application schema developed at met.no for representing time series in XML

Image Generation

- Builds on the Diana meteorological visualization and production software developed at met.no
 - Visualization of fields, satelitte and radar images, surface observations, weather charts, etc.
- OpenLayers
- MapServer

WDB: What are the problems?

Common Claims:

- Relational Databases are not suitable they do not support multi-dimensional arrays
- Poor performance on large arrays
- Databases are general purpose and there is therefore a significant overhead in both resources and performance

Are they problems?

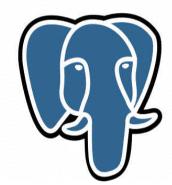
- The advantage of extending a relational database system:
 - You build the functionality that does not exist, or is not handled well in the RDBMS
 - You get huge amounts of functionality for free
 - When you need to add new functionality, you rarely need to build from scratch
 - You build on an extremely well-tested base
 - E.g., modified version of Postgres are used by Yahoo!, reddit, Skype, ISS (International Space Station), etc.

But...

Performance

 You can always do things faster in some other way, if you spend enough time on it

Space constraints


- WDB works with uncompressed data; it is built for speed, not saving space
- Databases are general-purpose!
 - Yes that does mean a lot of functionality that one will (maybe) never need

So why use the DBMS?

- Some of the stuff you get for free:
 - Data-independent API
 - Near universal platform support
 - SQL Query > complex routines
 - Easy to browse
 - Transactions, multiple user handling
 - Scalability
- A flexible, efficient, robust and sharable system architecture

What was the point again?

- High Performance
 - Response times from ~80ms (main memory) to ~240ms (database)
- Scalable
 - More performance > New server
- Flexible
 - Able to store many types of meteorological and oceanographic data (point data, grids, binary data)
 - Delivers data in various forms (data points or binary streams)

June 6-9, 2011

The Yr.no Backend System

Robust storage system that can be leveraged

Future Plans

- Additional data support
 - Integration with NetCDF-Java
- Extreme scalability
 - Distributed database technology
 - Distributed memory caching
- Data compression
- Point data optimization
- Fixing bugs and adding/improving features

Open-source

- WDB System
 - On sourceforge: http://wdb.sf.net
 - Source code, subversion repository, documentation (wiki and manuals)
 - Announcements on freshmeat.net
- Diana
 - Check http://diana.met.no

Why is it open-source?

- We want others to use it, of course!
 - Reliability and Stability are very important. More users = more bugs found = more bugs fixed
 - The code is open = if you find a bug and we don't have the time to fix it, do it yourself
- Benefit the international meteorological community
- Open-source software is a key element in the Norwegian Government's ICT strategy

Conclusions

- Yr.no is built on an entire tool chain of free and open source systems
 - Reliable
 - Flexible
 - Efficient
- Open source software exist to try, test, and tweak.
 - You're welcome